UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

COORDINACIÓN GENERAL DE FORMACIÓN PROFESIONAL PROGRAMA DE UNIDAD DE APRENDIZAJE

I. DATOS DE IDENTIFICACIÓN

1. Unidad Académica: Facultad de Arquitectura y Diseño, Mexicali; y Facultad de Ciencias de la Ingeniería y la Tecnología, Valle de las Palmas.

2. Programa Educativo: Licenciado en Diseño Industrial

3. Plan de Estudios: 2021-2

4. Nombre de la Unidad de Aprendizaje: Física, Mecanismos y Ensambles

5. Clave: 40155

6. HC: <u>02</u> HT: <u>00</u> HL: <u>02</u> HPC: <u>00</u> HCL: <u>00</u> HE: <u>02</u> CR: <u>06</u>

7. Etapa de Formación a la que Pertenece: Disciplinaria

8. Carácter de la Unidad de Aprendizaje: Obligatoria

9. Requisitos para Cursar la Unidad de Aprendizaje: Ninguno

Equipo de diseño de PUA

Alberto Hernández Maldonado Alejandra Janeth Ávila Robles Rubén Alaniz Plata Vo.Bo. de subdirector(es) de Unidad(es) Académica(s) Daniela Mercedes Martínez Plata Paloma Rodríguez Valenzuela

Fecha: 02 de marzo de 2021

II. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

La unidad de aprendizaje proporciona los aspectos básicos de la física, así como los diferentes tipos de mecanismos, ajustes y tolerancias, lo que permite analizar el comportamiento estático y dinámico de mecanismos para su aplicación en productos de diseño industrial.

Se ubica en la etapa disciplinaria con carácter obligatorio, y forma parte del área de Tecnologías.

III. COMPETENCIA GENERAL DE LA UNIDAD DE APRENDIZAJE

Analizar el comportamiento estático y dinámico de mecanismos, mediante el uso de modelos matemáticos, herramientas informáticas, componentes digitales y simulaciones, considerando a los fenómenos físicos y parámetros geométricos involucrados, para implementarlos en prototipos de diseño industrial con actitud crítica, síntesis y trabajo colaborativo.

IV. EVIDENCIA(S) DE APRENDIZAJE

Elabora y entrega problemas resueltos de física empleando modelos matemáticos que representan la relación del conocimiento de objetos ante los fenómenos planteados.

Realiza y presenta prácticas de modelado en 3D y simulación de movimiento bajo condiciones de contacto, fuerza y gravedad para el análisis de posición, velocidad y aceleración en mecanismos.

V. DESARROLLO POR UNIDADES UNIDAD I. Física

Competencia:

Distinguir los conceptos y principios de mecánica clásica, mediante el análisis estático y dinámico de los objetos, para calcular fuerzas, velocidades, posiciones y aceleraciones, con disposición en el trabajo colaborativo, objetividad y creatividad.

Contenido: Duración: 8 horas

- 1.1. Conceptos de mecánica clásica
 - 1.1.1. Leyes de newton
 - 1.1.2. Conceptos de masa y fuerza
 - 1.1.3. Descomposición y suma de vectores
- 1.2. Equilibrio de cuerpo rígido
- 1.3. Dinámica
 - 1.3.1. Velocidad, aceleración y posición
 - 1.3.2. Dinámica del movimiento circular
- 1.4. Centroide y centro de masa

UNIDAD II. Mecanismos

Competencia:

Analizar los diferentes mecanismos, reconociendo su funcionamiento y comportamiento, para aplicarlos en el diseño de prototipos, con interés, visión y objetividad.

Contenido: Duración: 20 horas

- 2.1. Animación en SolidWorks
 - 2.1.1. Cámaras
 - 2.1.2. Fotogramas clave
 - 2.1.3. Renderizado de clip de video
- 2.2. Simulación en SolidWorks Motion
 - 2.2.1.1. Gravedad
 - 2.2.1.2. Fuerzas
 - 2.2.1.3. Motores
 - 2.2.1.4. Contactos
 - 2.2.1.5. Calcular/Ejecutar Simulación
- 2.3. Biela manivela corredera
- 2.4. Biela manivela balancín
- 2.5. Engranes
 - 2.5.1. Engranes rectos
 - 2.5.2. Engranes cónicos
 - 2.5.3. Engranes helicoidales
- 2.6. Tornillo sin fin
- 2.7. Piñón cremallera
- 2.8. Levas

UNIDAD III. Ajustes y tolerancias

Competencia:

Identificar el tipo de ajustes, reconociendo los usos, aplicaciones y cumpliendo con los estándares internacionales que determinan la tolerancia, para obtener la unión óptima de dos elementos, con responsabilidad.

Contenido: Duración: 4 horas

- 3.1. Definiciones de ajustes y tolerancias
 - 3.1.1. Notación
 - 3.1.2. Ajustes en el sistema ISO y ANSI
 - 3.1.3. Determinación del tipo de ajuste
 - 3.1.4. Ajuste para el sistema Americano
 - 3.1.5. Interpretación de límites de tamaño

VI. ESTRUCTURA DE LAS PRÁCTICAS DE LABORATORIO				
No.	Nombre de la Práctica	Procedimiento	Recursos de Apoyo	Duración
UNIDAD I				
1	Suma de vectores	Atiende las orientaciones del profesor para elaborar la práctica. Resuelve ejercicios. a) Descomposición de vectores. b) Suma y resta de vectores. 3. Entrega ejercicios resueltos.	 Internet. Software de citación y editor de texto. 	2 horas
2	Equilibrio de cuerpo rígido	 Atiende las orientaciones del profesor para elaborar la práctica. Resuelve ejercicios de equilibrio de cuerpo rígido. Entrega ejercicios resueltos. 	 Computadora. Internet. Software de citación y editor de texto. Recursos bibliográficos (libros, revistas, capítulos de libros, artículos, manuales, etc.). 	3 horas
3	Cuerpos en movimiento	 Atiende las orientaciones del profesor para elaborar la práctica. Resuelve ejercicios. a) Aplicación de las leyes de newton. b) Movimiento rectilíneo c) Movimiento circular. Entrega ejercicios resueltos. 	ŕ	3 horas
UNIDAD II				
4	Simulación y vídeo	 Atiende la exposición del profesor sobre los conceptos básicos de simulación, vídeo y cómo se aplican. Realiza simulación con software de diseño 3D. 	ComputadoraSoftware de diseño 3D	2 horas

		3. Genera vídeo 4. Entrega de archivos comprimidos y vídeo del resultado.	
5	Animación y simulación	 1. Atiende la exposición del profesor sobre los conceptos básicos de animación, vídeo y cómo se aplican. 2. Realiza simulación y animación con software de diseño 3D. 3. Genera vídeo. 4. Entrega de archivos comprimidos y vídeo del resultado. Computadora Software de diseño 3D 	3 horas
6	Conversión de movimiento de rotación a traslación	 1. Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. 2. Realiza simulación y animación con software de diseño 3D. 3. Genera vídeo. 4. Entrega de archivos comprimidos y vídeo del resultado. Computadora Software de diseño 3D. 	2 horas
7	Conversión de movimiento de rotación a pendular	 1. Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. 2. Realiza simulación y animación con software de diseño 3D. 3. Genera vídeo. 4. Entrega de archivos comprimidos y vídeo del resultado. • Computadora • Software de diseño 3D • Software de diseño 3D 	2 horas

8	Transmisión por engranes rectos	 Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. Realiza simulación y animación con software de diseño 3D. Genera vídeo. Entrega de archivos comprimidos y vídeo del resultado. 	2 horas
9	Transmisión por engranes helicoidales y cónicos	 Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. Realiza simulación y animación con software de diseño 3D. Genera vídeo. Entrega de archivos comprimidos y vídeo del resultado. Computadora Software de diseño 3D. 	3 horas
10	Cambio de dirección	 Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. Realiza simulación y animación con software de diseño 3D. Genera vídeo. Entrega de archivos comprimidos y vídeo del resultado. Computadora Software de diseño 3D. 	3 horas
11	Movimiento lineal	 1. Atiende la exposición del profesor sobre el mecanismo, los parámetros físicos involucrados y cómo se aplican. Computadora Software de diseño 3D 	3 horas

		 Realiza simulación y animación con software de diseño 3D. Genera vídeo. Entrega de archivos comprimidos y vídeo del resultado. 	
Unidad III			
12	Ajustes y tolerancias	 Atiende las orientaciones del profesor para elaborar la práctica. Resuelve ejercicios de cálculo de ajustes y tolerancias. Entrega ejercicios resueltos. 	4 horas

VII. MÉTODO DE TRABAJO

Encuadre: El primer día de clase el docente debe establecer la forma de trabajo, criterios de evaluación, calidad de los trabajos académicos, derechos y obligaciones docente-alumno.

Estrategia de enseñanza (docente):

- Presenta información sobre los conceptos básicos
- Presenta ejercicios prácticos relacionados con las temáticas
- Dirige, supervisa y retroalimenta las prácticas
- Propicia la participación activa de los estudiantes
- Revisa y evalúa reportes de prácticas y actividades
- Elabora y aplica evaluaciones

Estrategia de aprendizaje (alumno):

- Investiga y analiza información sobre conceptos básicos
- Resuelve ejercicios prácticos proporcionados por el profesor
- Realiza las prácticas
- Participa activamente en clase
- Elabora y entrega reportes de prácticas
- Trabaja de manera individual y en equipo
- Elabora y entrega actividades y prácticas en tiempo y forma

VIII. CRITERIOS DE EVALUACIÓN

La evaluación será llevada a cabo de forma permanente durante el desarrollo de la unidad de aprendizaje de la siguiente manera:

Criterios de acreditación

- Para tener derecho a examen ordinario y extraordinario, el estudiante debe cumplir con los porcentajes de asistencia que establece el Estatuto Escolar vigente.
- Calificación en escala del 0 al 100, con un mínimo aprobatorio de 60.

Criterios de evaluación

Total	100%
- Ejercicios resueltos	15%
- Evaluaciones	50%
- Prácticas de simulación	35%

IX. REI	FERENCIAS
Básicas	Complementarias
Beer, F. P., E. Russell Johnston, Jr, Phillip J Cornwell. (2010). Mecánica vectorial para ingenieros. Estática. DF, México. Editorial McGraw-Hill. [clásica] Beer, F. P., E. Russell Johnston, Jr, Phillip J Cornwell. (2010). Mecánica vectorial para ingenieros. Dinámica. DF, México. Editorial McGraw-Hill. [clásica]	González, S.G. (2019). El gran libro de SolidWorks® Simulation. Barcelona. Editorial Marcombo. Ohanian, H. C. & Markert, J. T. (2009). Física para ingeniería y ciencias (Volumen 1). Ed. McGraw-Hill. [clásica] Meriam, J. L., Kraige, L. G., Bolton, J. N. (2014). Engineering Mechanics. Statics, Wiley. [clásica]
Bueche, F.J., Hetch, E. (2007). Física general. DF, México. Editorial McGraw-Hill. [clásica]	Meriam, J. L., Kraige, L. G., Bolton, J. N. (2016). <i>Engineering Mechanics</i> . Dynamics, Wiley.
Hibbeler, R.C. (2004). Mecánica vectorial para ingenieros: dinámica. DF, México. Editorial McGraw-Hill. [clásica] Dassault Systèmes SolidWorks Co. (2010). Introducción a las aplicaciones de análisis de movimiento con SolidWorks Motion, Cuaderno de trabajo del estudiante. Recuperado de: https://www.solidworks.com/sw/docs/Motion_Sim_Stude nt_WB_2011_ESP.pdf[clásica]	 Marion J. B., 2002. Dinámica Clásica de las Partículas y Sistemas. Editorial Reverte. Impreso en México. [clásica] Tippens, P., Física. Conceptos y aplicaciones, Mc Graw Hill, Séptima-revisada (2011). [clásica] Tipler, Paul Allen/Mosca Gene. (2010). Física para la ciencia y la tecnología Volumen 1.Editorial Reverte. [clásica] Wolfgang Bauer; Gary D. Westfall. (2011). Física para ingeniería y ciencias (Volumen 1). Ed. McGraw-Hill. [clásica]
Facultad de ingeniería UNMdP. (2015). Ajustes y tolerancias. Recuperado de: http://www3.fi.mdp.edu.ar/tecnologia/archivos/TecFab/1 1.pdf Juvinall, R.C., Marshek, K.M. (2013). Diseño de elementos de	
máquinas. México. Limusa. [clásica] Onwubolu, G. (2013). Computer-aided engineering design with SolidWorks. London. Imperial College	

Press[clásica]	
Torres, C.G. (2016) Análisis y síntesis de mecanismos con aplicaciones. México, D.F, Grupo Editorial Patria.	

X. PERFIL DEL DOCENTE

El docente que imparta la unidad de aprendizaje debe contar con título de Diseñador Industrial, Ingeniero, Físico o de un área afín. Con conocimientos avanzados de física, dibujo técnico y software de modelado 3D y simulación digital; preferentemente con estudios de posgrado y dos años de experiencia docente o tres años de experiencia profesional en ambientes relacionados a los temas de la asignatura. Debe ser vanguardista, proactivo y disciplinado.